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We examine weakly dissipative, weakly nonlinear waves in which the fundamental 
derivative Fchanges sign. The undisturbed state is taken to be at rest, uniform 
and in the vicinity of the F= 0 locus. The cubic Burgers equation governing these 
waves is solved numerically; the resultant solutions are compared and contrasted to 
those of the inviscid theory. Further results include the presentation of a natural 
scaling law and inviscid solutions not reported elsewhere. 

1. Introduction 
In recent years, the existence of negative nonlinearity has been predicted for a 

number of single-phase fluids of practical interest. Negative nonlinearity occurs when 
the thermodynamic parameter 

is negative for a range of pressures and temperatures. Here p ,  3 and E are the 
dimensional density, entropy and sound speed respectively. The quantity r is 
frequently referred to as the fundamental derivative of gasdynamics. When r is 
negative at every point in a body of fluid, wavefronts steepen backwards and 
expansion or rarefaction shocks are the only discontinuities capable of propagating 
in the fluid. Two of the earliest studies concerned with such fluids are due to Bethe 
(1942) and Zel’dovich (1946), who showed that Van der Waals gases exhibit negative 
nonlinearity provided the specific heats take on sufficiently large values. 

Lambrakis & Thompson (1972) and Thompson & Lambrakis (1973) have carried 
out detailed computations with more accurate equations of state to provide specific 
examples of gases in which negative nonlinearity may be observed. These were seen 
to be hydrocarbons and fluorocarbons of moderate complexity. Although more 
accurate computations may be desirable, the region of interest for single-phase fluids 
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was clearly consistent with the predictions ofthe previous studies. Recent experimental 
studies by Borisov et al. (1983) have clearly demonstrated the existence of negative 
nonlinearity in an ostensibly single-phase fluid. In these shock-tube studies, stable 
expansion shocks were observed in the relatively simple compound Freon-13 (CClF,). 
However, in this case, the negative nonlinearity is due to the well-known anomalous 
behaviour of the specific heat and sound speed a t  the critical point. 

Because the fundamental derivative (1 . l )  is a thermodynamic function, i t  generally 
varies from point to point in a disturbance. When the wave amplitudes are sufficiently 
large, the local value of r c a n  change sign within a single wave or pulse. When this 
is the case, previous investigations show that the wave dynamics can be surprisingly 
different from that characteristic of ideal gases. In particular, Thompson & Lambrakis 
(1973) have predicted the existence of shocks of moderate strength having both 
upstream and downstream Mach numbers equal to  unity. In  the following we refer 
to  the condition where the convected sound speed a t  a shock is identical to  the speed 
of the shock as sonic. Thus, the shocks of Thompson & Lambrakis can be referred 
to  as double sonic shocks. Cramer & Kluwick (1984; hereinafter referred to  as I), have 
developed a complete weak-shock theory for fluids having regions of both positive 
and negative nonlinearity. This study illustrated the formation and propagation of 
expansion and compression shocks in the same pulse. Ultimately, the compression 
and expansion shocks were seen to  collide resulting in a single merged shock. The 
nature of the merged shock depended on the undisturbed state of the fluid. Although 
the double sonic shocks of Thompson & Lambrakis (1973) are not ordinarily possible 
for weak waves, shocks having sonic conditions on only one side are in fact possible. 
The structure of these Bonic shocks was determined and it was shown that, on the 
sonic side, these approach the inviscid conditions algebraically rather than expo- 
nentially. Thus, not only are the sonic shocks a new and interesting phenomenon in 
the inviscid theory, but the viscous structure of these waves contrasts sharply with 
that of non-sonic shocks. Associated with these sonic shocks are the partial 
disintegration of both compression and expansion shocks and a complicated depen- 
dence on initial conditions which are taken into account by the precursor waves 
described in I. 

When viscosity and heat conduction were considered, i t  was shown in I that the 
nonlinear evolution could be described by the cubic Burgers equation discussed in 
52. As proved by Nimmo & Crighton (1982), no linearizing Backlund transformations 
can exist which would yield analytical solutions to this equation. Although limited 
success may be obtained through use of a pure finite difference scheme, the expected 
difficulties at steep wavefronts cannot be overcome during the most interesting phase 
of the evolution, namely the collision between compression and expansion shocks. 
The present paper, therefore, reports the development of a mixed scheme capable of 
solving this equation under a wide variety of conditions. As an example we apply 
this to the square wave initial conditions discussed in I and compare the results to  
the inviscid theory. In  doing so we provide an  independent verification of the 
complicated wave evolution predicted by I .  Furthermore, we illuminate the viscous 
structure of the collision between compression and expansion shocks ; in the inviscid 
theory this collision occurs at a single point in space-time. 

A complete qualitative and partial quantitative description of the inviscid 
evolution of a square wave was given in I. In  order to give a quantitative comparison 
of the viscous and inviscid theories, a complete analytical description of the inviscid 
theory has been obtained and is summarized in $3. Although some of the quantitative 
results presented may be obtained from I, most are new results not reported 
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elsewhere. We have also found that a more natural scaling may be found; this is 
described in $2. 

We expect the results presented in I and here to be of interest in other areas of 
mechanics and engineering. References to related phenomena in solid mechanics, 
plasma physics and superfluid hydrodynamics have been given in I. In addition to 
these studies, Kluwick (1986) has derived the analog of (2.2) for the case of long waves 
in suspensions of solid particles in fluids. Turner (1979, 1981, 1983) has derived an 
equivalent set of equations for second-sound waves near the b-nodal line in liquid 
helium. The existence of both compression and expansion shocks for square wave 
initial conditions was predicted and observed (see also the review by Liepmann & 
Laguna 1984). An analysis of the shock structure was also given (Turner 1979). A 
summary of rarefaction shocks in vapour-liquid mixtures has been provided by 
Thompson, Carofano & Kim (1986). 

2. Problem statement 
We consider small disturbances in a weakly dissipative Navier-Stokes fluid. The 

undisturbed state is taken to be uniform and a t  rest and sufficiently near the p= 0 
locus. In particular, we take 

where so, po, a,, p0 are the entropy, density, sound speed and shear viscosity evaluated 
at  the undisturbed state. The non-dimensional quantity R is recognized as a wave 
Reynolds number based on the disturbance length L. In I, it was shown that, under 
these conditions, the evolution of one-dimensional waves is governed by 

u;+(P+~Au)uu, = puxx, (2.2) 

where (2.3) 

The quantities Z and 1 are the dimensional position and time and E is a small parameter 
measuring the disturbance amplitude. The nonlinearity and dissipation constants p,  
A and S are defined as 

where yo, A,, Pr are the values of the ratio of specific heats, second viscosity and 
Prandtl number evaluated at the undisturbed state. A comparison of (2.4) with (2.1) 
shows that p ,  A and 6 are all of order one in the limit of small E. Here we recognize 
p and S as scaled versions of the fundamental derivative and acoustic diffusivity, 
respectively. 

A typical initial condition for this problem is given by 

where F is a non-dimensional function of its argument and A is a second non- 
dimensional amplitude parameter taken to be of order one. It should be recognized 
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that  such a separation of the wave amplitude into separate amplitude parameters 
is somewhat artificial. However, i t  will be convenient to use 8 to  fix the overall 
amplitude levels; the second parameter will then be chosen to  fix the specific wave 
amplitude. The function F may be taken to have a maximum absolute value of 1.  
When the non-dimensionalizations (2.3) are applied, the initial condition becomes 

u ( X ,  0) = AF(X) .  (2-5) 

Equations (2.2) and (2.5) form the initial-value problem governing the evolution 
of weak waves in which r takes on both positive and negative values. I n  order to 
simplify the discussion, a set of rescalings were proposed in I. The resulting dependent 
and independent variables were termed universal variables. When these rescalings 
are applied to  (2.2) and (2.5) i t  is found that the solution depends on three 
non-dimensional groups. Since then a more convenient and informative set of 
rescalings has been discovered. If we define new variables 

A 1 P 
r n 1-41 

v=,u, E = - X ,  7 = - ? ,  

(2.2) and (2.5) become 

where cr denotes the sign of A ,  i.e. A / l A l ,  and 

AAE 
A,  = - r .  

In  terms of the physical variables, the density disturbance will be given by 

where the function 9 is given by the solution to (2.7). Thus, solutions corresponding 
to the same function F will be self-similar provided both the amplitude and 
dissipation similarity parameters (2.8) are the same. It is also a formal requirement 
that  the sign of A ,  i.e. u, must be the same for the two flows, although this is not 
likely to  be a major constraint. Typical initial conditions of interest are symmetric 
about ?E = 0. In this case, F(aE) in (2.7) may be replaced by F(6)  and the functional 
form of the final solution will not depend on c. The advantage of this rescaling over 
the universal variables used in I is that  the number of similarity parameters is 
reduced, provided we disregard ., from three to two. Furthermore, because the 
scaling on X is essentially independent of the nonlinearity parameters, the dissipation 
parameter 6, is a true measure of the actual dissipation; this again contrasts with 
the variables presented in I. A final advantage is that  &, L and A,/As are determined 
completely by the thermodynamic state of the undisturbed fluid. Thus, the similarity 
parameters (2.8) may be varied independently by varying only the length and 
amplitude of the initial waveform. 
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In  this paper, we examine the special case of a square 
equal to L. The function F will therefore be taken to be 
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wave having a total length 

(2.10) 

In order to focus on the main nonlinear effects we will take the undisturbed state 
and the length of the wave to be fixed. In  terms of the similarity parameters, this 
means that 8, and u will be fixed. In  the examples discussed, the value of the small 
parameter will also be fixed; and the wave amplitude, and therefore A,, will be varied 
by choosing various values of A. 

3. Inviscid solutions 

characteristic relation 
In I it was shown that inviscid motions of these fluids are governed by the 

(3.1) 
d5 v = constant on - = v+?pv2, 
dr 

the expression for the shock speed 

and the speed ordering relation 

dl1 d r ,  >%$yb. dr d7 (3.3) 

Equations (3.1)-(3.3) have been cast in terms of the similarity variables given in (2.6). 
The subscripts a and b denote conditions after and before the shock respectively. As 
in I, the designations a and b must be interchanged when (r < 0; this is due to the 
reflection of the Z-axis in (2.6). The function 6, = f ( r )  represents the shock trajectory 
in ([,.r)-space. Results (3.1) and (3.2) were derived in I through an analysis of the 
exact inviscid equations. The speed ordering relation (3.3) is used to rule out 
inadmissible discontinuities. In  terms of the inviscid theory, this was taken to be a 
highly plausible postulate. However, it was also shown in I that (3.3) emerges 
naturally from the analysis of the viscous structure of these shocks, i.e. i t  is a 
necessary condition for the existence of a viscous structure of the discontinuities. 

The equality in (3.3) is the condition for sonic shocks. By combining (3.1)-(3.3), 
the strength and speed of sonic shocks can be shown to be 

[vI = f (va+1) ,  (3.4) 

!% = Q(va+3)(v,-1), 
dr d r b  (3.5) 

where the brackets will denote jumps in the indicated quantity, i.e. [Q] = Qa-Qb. 
These are an explicit expression of the fact that the strength and speed of sonic shocks 
are determined uniquely by the conditions on only one side of the shock. 

When applied to the square-wave initial condition (2. lo), the inviscid equations 
(3.1)-(3.3) yield four qualitatively different cases. When A, > - 1,  the local value of 
r h a s  the same sign everywhere in the pulse. As one would expect, the final waveform 
is either a compression or expansion shock, which interacts with, and is eroded by, 
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FIQURE 1 .  Typical (5, 7)-diagram for case (i) -f < A ,  c - 1 .  Unless indicated otherwise, all 

solid lined are characteristics defined by (3.1). 

a centred expansion or compression fan. In order to focus on the new phenomena 
predicted in I, we will confine our attention to the remaining amplitude ranges listed 
below 

(i) -; < A ,  < - 1,  

(ii) - 3  < A,  < -%, 

(iii) A ,  < -3. 

(3.6) 1 
The corresponding (C,~)-diagrams are given in figures 1-3. It should be noted that 
these are merely representative sketches to illustrate the general behaviour in each 
amplitude range and should not be used for quantitative purposes. Computed density 
distributions are provided in figures 4-6. These are plotted in terms of the original 
variables (2.3) and are typical of undisturbed states having P > 0, A < 0. 

For these values off: A ,  the density distribution of case (i) consists of a compression 
shock, a constant density region and an expansion shock followed by a centred 
expansion fan; see, for example, figures 1 and 4. The strength of the expansion shock 
is given by (3.4) with v, = A,. In terms of the similarity variables, the time at which 
these shocks collide is 24(A,+3)-2. After this time the shock interacts with the 
centred fan. To compute this interaction, we set v, = 0 in (3.2) and recognize that 
vb is given by the centred fan. A second expression for the shock speed is derived 
by evaluating the integrated form of the characteristic relations (3.1) at the shock. 
When these expressions for the shock speed are equated, we find that the density 
perturbation before the shock, vb = v ( f ( 7 ) , 7 )  = G(7), satisfies 

dG G 3 + 2 G  -=--- 
d7 67 1 + G '  
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FIGURE 2. Typical (&.r)-diagrarn for case (ii) -3  < A ,  < - t .  Unless indicated otherwise, all 
solid lines are characteristics defined by (3.1). 

- 3  - 2  - 1  0 

FIGURE 3. Typical (6,  .r)-diagrarn for case (iii) A ,  < -3. Unless indicated otherwise, all solid 
lines are characteristics defined by (3.1).  
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FIGURE 
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4. Square wave evolution for A = 0.77, A,  = - 1.32. Collision time is f x 2.94. 
lines denote inviscid solution. Solid lines denote computed viscous solution. 
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FIGURE 5. Square wave evolution for A = 1.0, A ,  = - 1.72. Collision time is f x 4.68. Precursor is 
present from f x 1.77 to f x 5.04. Dotted lines denote inviscid solution. Solid lines denote computed 
viscous solution. 

Immediately after collision (see figures 1 and 4), vb is given by the first wave of the 
centred fan. Thus the initial condition for the interaction is 

24 
( A ,  + e ) 2  ' 

v,, = G = -?jAe+3 at 7 = 

When the above differential equation for G is integrated and the initial condition is 
employed, the decay law for the fan-shock interaction is found to be 

7G2(G+i) = -3Ae.  (3.7) 
An analogous version of (3.7) was derived in I for the case A ,  > 0. It can be shown 
that the general form of (3 .7) ,  i.e. that obtained by replacing the right-hand side by 
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- 1  0 1 
X 

FIQURE 6. Square wave evolution for A = 1.86, A, = -3.20. Expansion shock becomes stationary 
at € z 0.24. Collision time is € z 9.86. Dotted lines denote inviscid solution. Solid lines denote 
computed viscous solution. 

a general integration constant, holds for all interactions between centred fans and 
non-sonic shocks. That is, the general result is independent of the particular point 
of origin of the fan, the nature of the shock and fan, i.e. whether compression or 
expansion, or the details leading to the interaction. 

In case (ii), the waveform consists of a sonic compression shock, followed by a 
centred compression fan, followed by a constant density region. The return to the 
undisturbed state is accomplished through a sonic expansion shock and centred 
expansion fan; see figures 2 and 5.  The expansion shock first penetrates the 
compression fan at time 

8 1  
70 = - 

3 (1  +Ae)2’ 

which yields a decay rate which appeared as equation (4.8) in I. In similarity variables 
this reads 

[v] = g ( l + A e ) ( y ;  (3.9) 

the expressions for u,, v,, may be obtained by combining (3.9) with (3.4). The 
derivation of (3.9) is essentially the same as that for (3.7). The main difference is that 
(3.5) must be employed in place of (3.2). As in the case of (3.7), the general form of 
the decay law (3.9), i.e. 

[v] = constant x 7 4 ,  

holds for all possible interactions between sonic shocks and centred fans. 
For 7 > 70, the sonic expansion shock is followed by a non-centred expansion 

referred to as a precursor which, in turn, is followed by the centred expansion fan. 
The term precursor is due to the fact that this wave always occurs before the 
expansion shock in either the universal variables of I or the similarity variables 
introduced here; see, e.g. figure 2. The flow in the precursor region is determined by 
integrating (3.1) to yield the usual parametric description of the density distribution ; 
the parameter employed in this study was the time at  which a sound wave represented 
by the characteristic line is emitted from the expansion shock. 
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The sonic expansion shock collides with the sonic compression shock at time 

7, = T ~ (  - 2( 1 +A,))!,  (3.10) 

where T~ is given by (3.8). For rep > 7 > 7, the merged shock interacts with the 
precursor which had previously separated the expansion shock from the expansion 
fan. Here T , ~  is the time a t  which the last wave of the precursor intersects the merged 

(3.11) 
shock and is given by 

this turns out to  be identical to  the collision time for case (i). The interaction between 
the precursor and merged shock is governed by 

24 - 
7ep - (A,  + 3)2 ' 

T@(G+ 1)f = 9 x 4-87,, (3.12) 

wherev, = 0, v b  = G(7)  and 7, isgiven by (3.10). The derivation of the decay law (3.12) 
is similar to  that of (3.7). The main difference is that the centred fan must be replaced 
by the precursor wave. For 7 > 7,p, the merged shock interacts with the centred 
expansion fan. The resultant decay law turns out to be identical to (3.7). It should 
be noted that results (3.11) and (3.12) were not explicitly given in I. 

I n  the course of the above derivations, it was found that the slope of the density 
distribution in the precursor is always infinite at the expansion shock. In fact, we 
have shown that 

as 6+tes, where tes(7) is the position of the sonic expansion shock at scaled time 7 .  

This vertical slope may be observed in figure 5 at the times E = 3.0, 4.0. It is also 
present at time F = 2.0, but the width of the precursor region is only AX x 2 x 
and is not noticeable on the scale of the figure. At E = 1.0, the expansion shock is still 
non-sonic and the precursor has not yet appeared. 

A second set of results not reported in I are the details of the solution for case (iii). 
Because of the nonlinear dependence of the shock speed on its strength, the expansion 
shock is initially non-sonic and propagates at a speed smaller than the sound speed 
of the undisturbed media. As a result, it  moves to  the left relative to the wave 
coordinates employed in figures 3 and 6. The compression shock is sonic and is 
followed by a centred compression fan. At a scaled time, 

(3.13) 

the expansion shock intersects the compression fan. This shock weakens according 
to a decay law similar to (3.7) and, at time 

rbp = -$A,, (3.14) 

the expansion shock stops, becomes sonic, and begins moving to  the right in figure 6. 
For rbp < 7 < T , ~ ,  the density distribution is given by a sonic compression shock 
followed by a centred compression fan, followed by the sonic expansion shock and 
precursor. The decay law for the expansion shock is similar to  (3.9) and the strength 
of the compression shock remains constant. Here T~~ is the scaled time at  which the 
expansion and compression shock collide and is given by 

T , , ~  = -$?A,. (3.15) 
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For 7 > T , ~ ,  the flow is governed by the interaction of the merged shock with the 
precursor emitted by the expansion shock at previous times. The decay law for this 
shock is essentially the same as (3.12) with a different integration constant; this reads 

T@( 1 + G)! = - 2A,, (3.16) 

where va = 0, vb = G(7).  We note that results (3.13)-(3.16) are new in the sense that 
they were not given explicitly in I. 

In closing, we note that in each of cases (i)-(iii) the final decay is given by 

as T+ co. This is easily verified by an inspection of the decay laws (3.7) and (3.16). 
Thus, in spite of the qualitatively different transient behaviour, the final evolution 
is always the same. 

4. Numerical scheme 
The governing equation, (2.2) or (2.7), is parabolic; thus both stability and 

accuracy must be considered when selecting a numerical algorithm. Reasonable 
alternatives include finite difference, Galerkin, collocation and spectral methods. A 
mixed-type algorithm using spline collocation in space and finite differences in time 
was chosen. Splines were chosen as the approximating basis functions because they 
provide high-order approximation power, are efficiently evaluated and are adaptable 
in the sense that their approximation power can be localized in small intervals; see, 
e.g. deBoor (1978). The presence of moving shocks makes this latter characteristic 
particularly attractive. 

For fixed time &, u ( X ,  &) was approximated as follows 
n 

~ ( x ,  t )  w C a,Bg(X), 
2-1 

where B2, i = 1,  . . . , n, are cubic B-spline basis functions defined on a knot sequence, 
xl, xz, . . . , x ~ + ~ ,  that extends well beyond the shock on both sides and ‘adapts’ to 
follow the shock. Both the number n+4 and the position of the knots varies with 
time and the severity of the shock; the knot spacing is very small in the vicinity of 
the shock. For a specified accuracy of a typical value of n was 500. Adaptive 
cubic spline collocation is a very sophisticated algorithm; complete details may be 
found in Ascher (1980) and Ascher, Christiansen & Russell (1981 a,  b ) .  

For stability, ui was approximated by the backward difference, 

u ( X ,  &) -u (X ,  &-At) 
A€ 9 

which results in the implicit equation 

with boundary conditions u ( X ,  &) + O  as X+ f a. The quantity u ( X ,  b- A€) will be 
known from the previous timestep. The overall scheme is to replace ui by a backward 
difference, replace u ( X ,  &) by a spline, enforce the boundary conditions and enforce 
the implicit nonlinear equation (4.1) a t  an appropriate number of discrete points. The 
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resulting nonlinear algebraic system of equations is then solved by a quasi-Newton 
algorithm (see, e.g. MorB, Garbow & Hillstrom 1980; Dennis & Schnabel 1983; 
Watson, Kamat & Reaser 1986). The error in this computed approximation to  u ( X ,  €) 
is then estimated. If the estimated error exceeds a specified tolerance, the number 
of knots is increased and the knot distribution is modified to improve the approxi- 
mation; details of this are found in Ascher et al. (1981b). Finally, the entire process 
is repeated until the error satisfies the imposed tolerance levels. 

The mathematical software employed was the adaptive spline collocation package 
COLSYS; see, e.g. Ascher et al. (1981 b) .  This was accurate and robust for the present 
problem, although was occasionally found to be inefficient. The number of collocation 
points was seen to vary between 100 and 1000. 

5. Results 
Sample calculations of square wave initial conditions (2.10) are depicted in 

figures 4-6; the variables appearing there are those defined in (2.3). For purposes 
of illustration, we have set the parameters (2.4) to be 

F = 5.0, A = -8.6, 6 = 5 x 

In terms of the similarity variables appearing in (2.8), we find c = -1, 
8, = 1.72 x The effective dissipation will therefore be the same for each case 
discussed. The differences observed in each case will be primarily due to nonlinear 
effects. 

The inviscid and viscous solutions for the case A = 0.77 are plotted in figure 4. 
Because A, z -1.32, this corresponds to case (i) in $3. The values of d have been 
specifically chosen to illustrate the viscous structure of the collision between the sonic 
expansion shock and the leading compression shock. At € = 1.0, the merging process 
is already in its initial stages. For this case, the inviscid theory, discussed in $3, 
predicts a collision time of 2.94. It was found that the merging process was essentially 
complete by this time. After the collision time the inviscid and viscous solutions are 
in reasonable agreement. More detailed computations show that this is also the case 
for times sufficiently less than that a t  which the viscous collision begins. Here we note 
that the expansion shock is somewhat thicker than the compression shock. This is 
due, in part, to  the fact that the strength of the former is less than half of the latter. 
The second factor is the fact that the expansion shock is sonic. It was shown in I 
that sonic and near-sonic conditions lead to inherently thicker shocks. 

I n  the second example, we have taken A = 1 which implies A, = - 1.72. The 
evolution of this case is depicted in figure 2. Equations (3.8) and (3.10) may be 
combined with the scalings (2.6) to verify that the collision time is f x 4.68. Again, 
the numerical calculations show that the viscous collision is essentially complete by 
this time. At subsequent times, the viscous and inviscid solutions were again seen 
to agree well. 

The last example has amplitudes A = 1.86, A ,  x -3.2 and is plotted in figure 6. 
Here we have chosen the times to illustrate the retrograde motion of the expansion 
shock. If we combine the scalings (2.6) with (3.13) and (3.14), we h d  that the 
expansion shock penetrates the compression fan a t  a time € x 0.19, at which time 
it  begins to weaken and slow. At F x 0.24 its stops and begins to propagate to  the 
right. Thus, the profile a t  € = 0.24 is that slightly before the expansion shock becomes 
stationary. At times € = 0.36-4.60, the smooth part of the expansion is carried out 
through the precursor, although this is readily seen only a t  the later two time 
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intervals. Here the infinite slope at  the expansion shock may also be observed. A t  
v = -2, u / A  x 0.625, the inviscid solution is known to be stationary in the wave 
coordinates employed here. It is interesting to note that the computed viscous 
solutions are also stationary there. This appears to be analogous to the result that 
the inviscid nodes of a periodic wave are frequently those of the viscous solution as 
well. 

6. Conclusions 
The results of this paper fall into three categories. The first is the presentation of 

a more convenient set of scalings for the viscous theory; see (2.6)-(2.8). The effects 
of nonlinearity and dissipation are characterized by the similarity parameters A ,  and 
8,. Once the thermodynamic state of the undisturbed fluid is specified, the first is 
determined by specifying the wave amplitude and the second by the length of the 
wave. We expect these similarity relations will be useful in relating results obtained 
in experimental and numerical studies. 

The second set of new results are the analytic solutions of the inviscid equations 
(3.1)-(3.3). These may be viewed as a continuation and completion of the analytic 
work carried out in I. 

The analytic solutions of the inviscid equations play an essential role in the 
realization of the final and main goal of this paper, namely the computation of 
dissipative solutions to (2.2) and the comparison of these solutions to the inviscid 
theory. The numerical scheme described in $4 has been found to be a powerful tool 
in the study of dissipative waves in fluids having both positive and negative 
nonlinearity. This conclusion is based on the success reported here as well as its 
application to the simpler case of step function initial conditions and the more 
complicated case of shock formation and propagation. Because the mesh adapts to 
the solution as it is generated, the scheme is seen to be capable of describing multiple, 
non-stationary shocks without the difficulties encountered in simpler, e.g. finite- 
difference, schemes. The results presented provide a description of the viscous 
collision between expansion and compression shocks; it was found that this is 
typically complete by the collision time predicted by the inviscid theory. Except for 
the time during which this collision takes place the solutions are seen to be in close 
agreement. Thus, a third important contribution is that this provides an independent 
verification of the predictions of the inviscid theory given in I. 
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